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Abstract
1.	 Dynamic management (DM) is a novel approach to spatial management that aligns 
scales of environmental variability, animal movement and human uses. While 
static approaches to spatial management rely on one-time assessments of biologi-
cal, environmental, economic, and/or social conditions, dynamic approaches re-
peatedly assess conditions to produce regularly updated management 
recommendations. Owing to this complexity, particularly regarding operational 
challenges, examples of applied DM are rare. To implement DM, scientific meth-
odologies are operationalized into tools, i.e., self-contained workflows that run 
automatically at a prescribed temporal frequency (e.g., daily, weekly, monthly).

2.	 Here we present a start-to-finish framework for operationalizing DM tools, con-
sisting of four stages: Acquisition, Prediction, Dissemination, and Automation. We 
illustrate this operationalization framework using an applied DM tool as a case 
study.

3.	 Our DM tool operates in near real-time and was designed to maximize target 
catch and minimize bycatch of non-target and protected species in a US-based 
commercial fishery. It is important to quantify the sensitivity of DM tools to miss-
ing data, because dissemination streams for observed (i.e., remotely sensed or 
directly sampled) data can experience delays or gaps. To address this issue, we 
perform a detailed example sensitivity analysis using our case study tool.

4.	 Synthesis and applications. Dynamic management (DM) tools are emerging as via-
ble management solutions to accommodate the biological, environmental, eco-
nomic, and social variability in our fundamentally dynamic world. Our four-stage 
operationalization framework and case study can facilitate the implementation of 
DM tools for a wide array of resource and disturbance management objectives.
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1  | INTRODUC TION

Spatial management is frequently used by governing bodies to 
govern human interactions with natural resources (e.g., timber 
stands, wild fish stocks) and disturbances (e.g., shipping lanes, 
oil spills), thereby achieving objectives for nature conservation 
and human use (Margules & Pressey, 2000). Dynamic manage-
ment (DM) is an emergent approach in which spatial bounda-
ries and management recommendations (i.e., advisories that 
spatially and/or temporally affect human behaviour) are flex-
ible in space and time, allowing scales of management to align 
with scales of environmental variability, resource and distur-
bance dynamism, and human uses (Maxwell et al., 2015). This 
contrasts with static management schemes, in which bounda-
ries and management recommendations are fixed in space and 
time, for example, national parks and superfund sites. DM ap-
proaches are targeted at fine spatial (kilometres to hundreds of 
kilometres) and temporal (days to years) scales, allowing result-
ant management areas to entail lower opportunity costs than 
static approaches (Dunn, Maxwell, Boustany, & Halpin, 2016; 
Hazen et al., 2018). Although a number of operational examples 
of DM exist (e.g., Hobday & Hartmann, 2006; Kavanaugh, Fisher, 
& Derner, 2013; O’Keefe & DeCelles, 2013), traditional static 
management remains the most widely used approach (Chape, 
Harrison, Spalding, & Lysenko, 2005), due in part to challenges 
with DM operationalization. While static approaches rely on 
single assessments of biological, environmental, economic, and/
or social (BEES) conditions and one resultant management rec-
ommendation, DM approaches regularly prescribe new manage-
ment recommendations based on changing BEES conditions. To 
implement this complex task, DM schemes are often operation-
alized into tools, which are self-contained workflows that run 
automatically at an appropriate temporal frequency (e.g., daily, 
weekly, monthly).

Dynamic management tools can function as nowcast or fore-
cast tools, producing near real-time or forecasted management 
recommendations respectively. Both types of DM tools rely 
on newly acquired BEES data relevant to describing the target 
features—often in combination with statistical models or algo-
rithms—to calculate target feature attributes (e.g., location, inten-
sity, or speed) for near real-time or forecasted BEES conditions. 
Target feature attributes are used to prescribe management rec-
ommendations, which are then disseminated to end-users. For 
example, WhaleWatch (Hazen et al., 2017) uses a species distri-
bution model to describe relationships between blue whales (the 
target feature) and a suite of oceanographic variables (BEES data) 
in order to predict likelihood of whale occurrence (target feature 
attribute), which then affects the locations of marine operations 
such as fishing and shipping (management recommendation). The 
Active Fire Mapping Program (Quayle, Sohlberg, & Descloitres, 
2004) uses an algorithm that describes the link between wild-
fires (the target feature) and satellite spectral bands (BEES data) 

to predict current fire activity, intensity, and extent (target fea-
ture attributes), which then guide homeowner evacuations (man-
agement recommendation). For example, mandatory evacuations 
in California, USA during summer 2018 were determined using 
Active Fire Mapping Program data (Sierra Sun Times, 2018). Coral 
Reef Watch (Liu, Strong, Skirving, & Arzayus, 2006) uses an al-
gorithm that describes the relationship between coral bleaching 
events (the target feature) and sea surface temperature (BEES 
data) in order to predict bleaching hotspots (target feature at-
tribute), which then directs restoration and monitoring efforts 
(management recommendation). For example, Bali Barat National 
Park in Indonesia has implemented a coral bleaching monitoring 
programme based on Coral Reef Watch data in which bleach-
ing alerts trigger SCUBA field checks (Marshall & Schuttenberg, 
2006).

Glossary

Near real-time: Of current, or nearly current temporal status

Management recommendation: An advisory that spatially and/or 
temporally affects human behaviour, e.g., areas to evacuate during 
floods

Algorithm: A stepwise set of rules to solve a problem (e.g., which 
pixels have bleaching risk based on a temperature threshold?)

Statistical model: A mathematical description of a problem including 
statistical assumptions underlying the data (e.g., which habitats do 
tuna prefer based on environmental correlates?)

BEES data or conditions: Biological, environmental, economic, and/or 
social data or conditions

Observed data: BEES data that are remotely sensed or directly 
sampled, e.g., satellite or gauge data

Modelled data: BEES data that are predicted via statistical or 
dynamical models that may be initialized with observed data, e.g., 
climate forecasts

Dynamic management (DM) tool: A family of spatial management 
tools in which management recommendations are regularly 
updated

Nowcast tool: A DM tool that produces management recommenda-
tions for near real-time BEES conditions

Forecast tool: A DM tool that produces management recommenda-
tions for future BEES conditions

Temporal frequency: The rate at which a tool produces a manage-
ment recommendation

Operationalization: A stepwise process by which a DM tool is 
implemented and applied

Target feature: A resource or threat managed by a DM tool

Target feature attribute: A calculated characteristic of a target 
feature, e.g., size or severity

Product: The end output of a DM tool that prescribes a management 
recommendation and optionally contains associated metadata

Latency: The temporal delay in the dissemination of DM products or 
BEES data

Contingency plan: A set of rules that govern DM tools’ operational 
responses to missing or sparse BEES data
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Four stages of operationalization

Acquisition: The regular collection of near real-time or forecasted 
data on BEES conditions

Prediction: The calculation of target feature attributes in near 
real-time or forecasted BEES conditions to produce final products 
that communicate management recommendations

Dissemination: The pathways by which products are distributed to 
end-users

Automation: The integration of Acquisition, Prediction, and 
Dissemination stages into streamlined workflows that run 
automatically at a prescribed temporal frequency

Dynamic management tools are increasingly recognized as core 
components of the spatial management toolbox, and rapidly advanc-
ing computer-processing power and Earth Observation technologies 
are likely to increase the rate of DM tool development. In the light 
of these developments, there is a need for a transparent step-wise 
framework to guide DM tool operationalization. The DM literature 
focuses heavily on the use of BEES data to describe target features, 
and frequently relegates the remainder of the operationalization pro-
cess to technical reports and metadata. Here, we lay out a four-stage, 
start-to-finish framework for operationalizing DM tools: Acquisition, 
Prediction, Dissemination and Automation (Figure 1). The framework 
is designed to be trans-disciplinary and applicable to multiple environ-
mental domains and to a diverse array of management aims. Below 
we introduce the framework and outline how existing DM tools fit 
within it, and discuss the trade-offs and practical considerations at 
each stage. We then use a case study to specify implementation of the 
framework in order to operationalize a DM tool. Finally, we discuss 
areas of future exploration for successful operationalization.

2  | MATERIAL S AND METHODS

2.1 | Introduction to the four-stage framework for 
DM tool operationalization

In order to illustrate the framework, we collated 10 operationalized 
DM tools and identify tool components (e.g., BEES data sources, tar-
get feature attributes, management recommendations) within each 
of the four stages (Table 1). Tools were selected to cover diverse en-
vironments (marine, freshwater, terrestrial, atmospheric) and a wide 
array of management aims, such as natural disaster preparedness, nat-
ural resource management, and human health. Hyperlinks to the web-
sites in which each tool is described and peer-reviewed references are 
provided in order to facilitate further tool exploration. The following 
sections are intended to be interpreted alongside Table 1 (e.g., to de-
termine which tools acquire satellite data), Figure 1, and the Glossary.

2.2 | Stage 1: Acquisition

Acquisition is the regular collection of near real-time or forecast data 
on BEES conditions relevant to describing target features and their at-
tributes. Acquired data can be either observed, i.e., collected via remote 

sensing (satellite data and radar) and direct sampling (gauges, airplane 
reconnaissance, participant reporting), or modelled, i.e., predicted via 
statistical or dynamical models that may be initialized with observed 
data (e.g., climate forecasts). When making decisions about acquiring 
data types, tool developers must balance trade-offs between accessi-
bility, cost, spatiotemporal resolutions, data gaps, and latency. Satellite 
and radar data are publicly available, free, and served from a wide array 
of repositories that are easily integrated into automated workflows (e.g., 
SWFSC/Environmental Research Division’s ERDDAP; Simons, 2017; 
The Copernicus Marine Environmental Monitoring Service). However, 
coarse spatiotemporal resolutions might render remotely sensed data 
unsuitable to describe highly dynamic and/or fine-scale features (Scales 
et al., 2017). Directly sampled BEES data can capture fine-scale spa-
tiotemporal characteristics, but their acquisition must often be sys-
tematized specifically for the tool, making them costlier and less easily 
automated. For example, in WaterWatch’s Acquisition stage, stream 
gauge readings are transmitted via satellite, radio, and telephone telem-
etry, depending on when gauges were installed. In SMAST’s Bycatch 
Avoidance Program’s Acquisition stage, bycatch events are transmitted 
by participating vessels via ship-to-shore email (O’Keefe & DeCelles, 
2013). Dissemination streams for observed BEES data can experience 

F IGURE  1 The four stages of operationalizing a dynamic 
management tool (hollow fill) and internal components (grey fill). 
The framework is relevant to operationalizing tools at one point in 
time and does not encompass tool updates as new data become 
available
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temporal delays and spatial gaps (e.g., gappiness in satellite data caused 
by clouds and aerosols, Roy et al., 2008), causing errors in the manage-
ment recommendations produced by DM tools. By evaluating tool sen-
sitivity to different scenarios of missing and spatially gappy data prior to 
operationalization, contingency plans can be developed to guide tools’ 
operational responses during the Acquisition stage. Modelled BEES 
data are generated and housed on servers allowing them to be easily ac-
quired and integrated into tools, and can alleviate issues with data gaps 
or latency. However, model output may introduce biases, and may be 
costly to create and maintain if models are being developed specifically 
for the tool (Christensen, Boberg, Christensen, & Lucas-Picher, 2008).

2.3 | Stage 2: Prediction

In the Prediction stage, newly acquired BEES data are post-processed 
into final products that communicate management recommendations 
that spatially and/or temporally affect human behaviour, advising for 
example, areas to fish, areas to evacuate, or areas to target environmen-
tal restoration. To produce management recommendations, tools often 
use statistical models or algorithms designed to describe target features 
based on newly acquired BEES data. For example in BirdWatch’s pre-
dictions stage, an algorithm is applied to calculate bird migration veloc-
ity profiles from weather surveillance radars (Farnsworth et al., 2016). 
Eveson, Hobdaya, Hartoga, Spillman, and Rough (2015) coupled a statis-
tical habitat preference model for tuna with an environmental forecast-
ing model to forecast suitable habitat. Other tools produce management 
recommendations by aggregating and summarizing newly acquired BEES 
data (Bethoney, Schondelmeier, Stokesbury, & Hoffman, 2013; O’Keefe 
& DeCelles, 2013). For example, in WaterWatch’s prediction stage, data 
from USGS stream station gauges are aggregated and summarized rela-
tive to baseline conditions. Because they spatially affect human behav-
iour, management recommendations are converted into final products 
that convey spatial information in some format, for example, in geo-
referenced files (e.g., shapefiles, rasters, NetCDFs, KMZ files), mapped 
images, latitude-longitude coordinate pairs, or text-based descriptions 
for known areas on the ground (O’Keefe & DeCelles, 2013). Product 
format should be tailored for—and developed in consultation with the 
end-users (Eveson et al., 2015; Petchey et al., 2015) to ensure that their 
technical capabilities, Internet and phone accessibility, and preferences 
are matched by product formats. Often, tools serve products in multiple 
formats to meet various scenarios of use, e.g., a simple format that works 
in low bandwidth areas and a detailed format for high bandwidth areas. 
The chosen product format will directly affect the dissemination (stage 
3) pathway taken.

2.4 | Stage 3: Dissemination

Dissemination is the pathway by which final products reach the 
end-users. Simple web-based approaches can disseminate prod-
ucts via images hosted on websites or persistent URLs. A more 
advanced web-based approach is to host products as interactive 
maps with options to provide higher level detail. For technologi-
cally savvy end-users, georeferenced data can be downloaded 

and explored locally in GIS platforms. These options assume that 
the end-users will regularly check for new web content. Rich Site 
Summary, text and email (O’Keefe & DeCelles, 2013) based dis-
semination pathways require initial subscription, but afterwards 
do not necessitate end-user action. Smartphone-based apps, 
which are already widely used for near real-time data collec-
tion and display (e.g., WhaleAlert: http://www.whalealert.org/; 
eCatch: https://www.ecatch.org/), represent another promising 
dissemination pathway for DM products. The above pathways are 
not mutually exclusive, and in some circumstances the use of mul-
tiple dissemination pathways might be advantageous to meet the 
needs of different end-users.

2.5 | Stage 4: Automation

Automation is the integration of the Acquisition, Prediction, and 
Dissemination stages into streamlined workflows that self-initiate 
at prescribed temporal frequencies. Automation is the backbone of 
operationalization and a critical step to creating reliable products. 
However, automation happens behind the scenes and templates to 
follow are typically not readily available. To facilitate automation, 
code libraries can be made publicly available on open-access plat-
forms (e.g., the open-access WhaleWatch code library: https://github.
com/evanhowell/WhaleWatch). The details of automation depend 
on tool characteristics, but the following best practice principles are 
likely to be ubiquitous: (a) as far as possible, house all tool components 
in the same location (e.g., run tools on the same servers that store 
and process BEES data); (b) when building cross-platform workflows, 
ensure functional advantages are worth potential trade-offs with pro-
cessing speed and complexity; and (c) log internal errors such as code 
breaks to aid debugging. Additionally, internal flags may be useful to 
trigger alternative tool behaviours (e.g., not producing a management 
recommendation) when acquired BEES data or predicted target fea-
ture attributes are outside normal ranges. Tools’ temporal frequencies 
should align with desired temporal scales of management recommen-
dation but will often be constrained by available BEES data.

3  | RESULTS

3.1 | Implementation of the four-stage framework: 
A fisheries sustainability case study

Here we demonstrate the four-stage operationalization framework 
outlined above using an established multispecies, multivariate dynamic 
ocean management tool (EcoCast) designed to balance fisheries’ envi-
ronmental and economic sustainability for a US-based commercial fish-
ery (Hazen et al., 2018). EcoCast was developed for the California Drift 
Gillnet Fishery, which operates seasonally in the western United States’ 
Exclusive Economic Zone from August to November. The Drift Gillnet 
Fishery targets swordfish (Xiphius gladius), but experiences unwanted 
catch (i.e., bycatch) of species including blue sharks (Prionace glauca), pro-
tected leatherback turtles (Dermochelys coricea), and California sea lions 
(Zalophus californianus), threatening the environmental sustainability of 

http://www.whalealert.org/
https://www.ecatch.org/
https://github.com/evanhowell/WhaleWatch
https://github.com/evanhowell/WhaleWatch
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the Drift Gillnet Fishery. In response, an interdisciplinary team of gov-
ernmental, academic, and NGO researchers developed EcoCast, a DM 
tool designed to reduce bycatch of protected and vulnerable species 
while minimizing reductions in target catch (Hazen et al., 2018).

EcoCast was developed by fitting statistical models (boosted re-
gression trees, Elith, Leathwick, & Hastie, 2008) to describe the pre-
ferred habitats of the target species (swordfish; Scales et al., 2017), 
and three bycatch species (blue sharks, leatherback turtles, and 
California sea lions). In the operationalization framework, these spe-
cies are the target features. Boosted regression trees for each spe-
cies are predicted over environmental variable layers (BEES data; see 
Supporting Information Appendix S1: Table S1) to produce daily habi-
tat suitability layers, i.e., georeferenced raster surfaces (target feature 
attributes). Species risk weightings—set to reflect management prior-
ities and recent catch events—are then applied to increase or reduce 
the influence of each species in the final product (Hazen et al., 2018). 
The weighted habitat suitability layers are summed and standardized 
to values from −1 to 1, where negative values indicate relatively low 
target catch/high bycatch probabilities, and positive values indicate 
relatively high target catch/low bycatch probabilities (see Hazen et al., 
2018 for details on environmental variables, model fit, and model val-
idation). The EcoCast product (e.g., Figure 2) is a daily map that pro-
vides fishers with information on the spatial distribution of areas that 
are relatively better or poorer to fish (management recommendation) 
as a function of the relative distributions of target and bycatch species.

3.2 | Sensitivity to missing environmental data

The sensitivity of the EcoCast tool to scenarios of missing environmental 
data was evaluated to create a contingency plan that dictates the tool’s 
operational response to missing data. Three possible responses to miss-
ing data were evaluated for each environmental variable: (a) substitute 
a lagged version of the variable, e.g., the variable from the previous day 
(lagged variable response); (b) leave the variable out entirely (leave-one-
out response); and (c) substitute a lagged version of the EcoCast product, 
e.g., the product from the previous day (lagged product response). It is 
uncommon for variable latency to exceed 1 week; however, data lags 
up to 1 month were evaluated to account for the possibility of major 
outages. For the lagged variable response, each variable was lagged in 
turn by 1, 7, 14, 21, and 30 days. For the lagged product response, each 
variable (see Appendix S1: Table 1) was lagged in turn by 1–8, 14, and 
30 days. Product accuracy, or the difference between a complete real-
time product (i.e., the full product) and a product created under con-
ditions of missing data (i.e., the contingency product), was evaluated 
across all responses. The three responses were evaluated for each day 
in the 2012 and 2015 fishing seasons (n = 306 days; an average year 
and an anomalously warm year respectively). Accuracy was quantified 
by subtracting the contingency product from the full product and then 
taking the absolute value to create a layer of difference. The mean per 
pixel difference between each layer was averaged across two example 
fishing seasons, 2012 and 2015. The sensitivity across responses was 
compared to develop a contingency plan for missing data, which was 
then built into the Acquisition stage (Section 3.3.1).

Results of this sensitivity analysis (Figure 3) indicated that the 
EcoCast tool performed poorly when leaving variables out entirely 
(leave-one-out response; bars in Figure 3). Contingency products 
with individual variables (excluding sea surface temperature) lagged 
up to 2 weeks (lagged variable response), and contingency products 
lagged up to 2 days (lagged product response) were more similar 
to the full product than contingency products created leaving out 
the least important variable (leave-one-out response). Contingency 
products with individual variables (excluding sea surface tempera-
ture) lagged up to a week (lagged variable response) were more 
similar to the full product than a contingency product with a 1-day 
lag (lagged product response). Because it is uncommon for variable 
latency to exceed 1 week, the following contingency plan was de-
veloped out to 1 week: For each missing variable except sea sur-
face temperature, substitute lagged versions up to a 7-day lag, after 
which substitute a 1-day lagged product. For missing sea surface 
temperature, substitute lagged versions up to a 4-day lag, after 
which substitute a 1-day lagged product. If variable latency exceeds 
the aforementioned rules, the website will display a message that the 
current predictions are unavailable. Information on variable latency 
is included on the product image during the Prediction stage (Section 
3.3.2) to ensure that metadata is not lost upon dissemination, and is 
communicated to end-users.

3.3 | Operationalizing a DM tool

Below we describe the implementation of the four-stage operationali-
zation framework, using the EcoCast tool as an example. Unless stated, 
all operationalization stages for EcoCast (Figure 1) were implemented 
in RStudio (version 1.0.153). Original code is available at https://github.
com/HeatherWelch/EcoCast_Operationalization. While the code li-
brary is unlikely to be generally applicable beyond EcoCast, specific 
functions may be relevant to other DM tools. The case study dem-
onstrated here is implemented using the r coding language; however, 
the four-stage framework is applicable to other coding and software 
languages.

3.3.1 | Stage 1: Acquisition

Near real-time environmental variables (see Appendix S1: Table S1) 
are downloaded daily as netCDF (Network Common Data Form) 
files from two online repositories, SWFSC/Environmental Research 
Division ERDDAP and the Copernicus Marine Environmental 
Monitoring Service, via Representational State Transfer (RESTful) 
web services. Custom functions construct RESTful URLs that con-
tain the desired time-stamp and spatial extent specifications. The 
URLs are then used to query the web services and resultant grid-
ded netCDF files are downloaded using the functions curlPerform 
(r package RCurl and writeBin [r package base]) and used in post-
processing (see Appendix S1: Table S1). For days in which environ-
mental variables are missing, the contingency plan developed in the 
sensitivity analysis (Section 3.2) is applied to guide the tool’s han-
dling of missing data.

https://github.com/HeatherWelch/EcoCast_Operationalization
https://github.com/HeatherWelch/EcoCast_Operationalization
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3.3.2 | Stage 2: Prediction

The species-specific boosted regression tree models described by 
Scales et al. (2017) and Hazen et al. (2018) were saved as.rds files 
for convenient reuse (function saveRDS—r package Base). Each 
day, the boosted regression tree model.rds files are read into r 
(function readRDS—r package Base) and predicted over the post-
processed environmental variables (function fit.gbm—R Package 
GBM) to produce daily habitat suitability layers for each species. 

Each species habitat suitability layer is multiplied by its risk weight-
ing, and then all layers are summed and standardized to values from 
−1 to 1 to create the final daily product (e.g., Figure 2). The daily 
product is a mapped image that displays predicted fishing qual-
ity, providing fishers and managers with information on the spatial 
distribution of areas that are relatively better or worse to fish (i.e., 
the management recommendation). Relevant metadata embedded 
on the image include the latency of each variable, the species risk 
weightings, contact information, and a logo (r package Magick).

F IGURE  2 An example of a daily 
EcoCast product disseminated to end-
users
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3.3.3 | Stage 3: Dissemination

The EcoCast dissemination pathways were developed in con-
sultation with industry stakeholders and product end-users. 
Through an iterative feedback process, drift gillnet fishers and 
the governing management body (Pacific Fishery Management 
Council) refined product delivery to meet end-user needs. Three 
dissemination pathways were developed: a persistent URL, a 
web-based application built using the r package Shiny, and the 
SWFSC/Environmental Research Division ERDDAP server. The 
persistent URL (http://oceanview.pfeg.noaa.gov/ecocast/) is a 
web address where content is updated daily to provide the most 
current EcoCast product while the URL remains consistent (e.g., 
Figure 2). Because the URL only hosts a small amount of data (a 
single image), it allows fishers to access EcoCast while they are 
out at sea in low bandwidth areas.

The second dissemination pathway, the Shiny application, is an 
interactive web application that allows stakeholders and the public 
to explore historical patterns in EcoCast management recommen-
dations from the previous fishing season. Within the Shiny appli-
cation, end-users can select management recommendations from 
dates of interest, and use sliders to adjust the species risk weight-
ings and filter the displayed values. Additional tick boxes provide 
options to display management boundaries and NOAA’s naviga-
tional charts. The Shiny application can be accessed at: https://
coastwatch.pfeg.noaa.gov/ecocast/explorer.html. Lastly, the 
SWFSC/Environmental Research Division ERDDAP server hosts 

EcoCast products in multiple georeferenced formats for public 
download and analysis (https://coastwatch.pfeg.noaa.gov/erddap/
griddap/ecocast.html). More information on dissemination pathway 
access and metadata can be found on the EcoCast website: https://
coastwatch.pfeg.noaa.gov/ecocast/.

3.3.4 | Stage 4: Automation

To automate the operationalization workflow, each r script in the 
Acquisition, Prediction and Dissemination stages was written as a 
function that initialized itself at the end of the script. Scheduling of 
the execution of each function was carried out within a shell script 
using the cron utility. The functions were scheduled to run each day 
at the top of every hour between 8 am and 3 pm to accommodate 
environmental data latency (see progression of scripts in Appendix 
S2: Figure S1). Each script writes errors and status reports to a daily 
log file. The EcoCast tool currently resides on the same network 
node as the environmental data, which has reduced the latency of 
environmental data during the Acquisition stage.

4  | DISCUSSION

This study has presented a trans-disciplinary four-stage, start-to-finish 
framework for operationalizing DM tools, and provided examples from 
multiple environmental domains to explore trade-offs and practical con-
siderations at each stage. Although specifics will vary between tools, the 

F IGURE  3 EcoCast tool sensitivity to scenarios of missing data. Plots show the mean per pixel difference between contingency 
and official products. The plot on the right shows the same data but on a different y-axis scale. Grey bars representing the leave-one-
out response are independent of the x-axis. Error bars indicate ± 1SD. EKE: eddy kinetic energy; CHLA: chlorophyll a; SST: sea surface 
temperature, SLA: sea level anomaly

http://oceanview.pfeg.noaa.gov/ecocast/
https://coastwatch.pfeg.noaa.gov/ecocast/explorer.html
https://coastwatch.pfeg.noaa.gov/ecocast/explorer.html
https://coastwatch.pfeg.noaa.gov/erddap/griddap/ecocast.html
https://coastwatch.pfeg.noaa.gov/erddap/griddap/ecocast.html
https://coastwatch.pfeg.noaa.gov/ecocast/
https://coastwatch.pfeg.noaa.gov/ecocast/
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generalized framework can serve as a guide to help developers foresee 
and assemble tool components. Using a fisheries sustainability tool—
EcoCast—as a case study, we demonstrated an applied example of the 
methodological approach for each operationalization stage, and a sensi-
tivity analysis to guide the tool’s handling of missing data. The sensitivity 
of DM tools to missing or sparse BEES data is infrequently evaluated, and 
we argue that these sensitivity analyses are critical for tools that use ob-
served data in order to minimize errors in management recommendations.

When evaluating tool sensitivity, development teams should con-
sider several caveats. First, for tools that use statistical models or al-
gorithms, acceptable operational responses in the contingency plan 
will be dictated by model or algorithm type. For example, some model 
types are able to predict over missing data (e.g., boosted regression 
trees, MaxEnt, Phillips, Anderson, & Schapire, 2006) making dropping 
out data a viable response; however, other types such as generalized 
linear models and generalized additive models cannot. Second, results 
are likely to be influenced by the spatial resolution of the BEES data 
used, with finer scale data likely to be more sensitive to latency due to 
an enhanced ability to resolve ephemeral features. And lastly, errors 
introduced in the contingency plan need to be consistent with accept-
able errors in the management recommendation. For example, while it 
might be acceptable for fishers to respond to day old data when decid-
ing where to fish, it would be inadvisable for homeowners to respond 
to day old data in terms of deciding where to evacuate from fires.

To ensure DM tools are able to meet the accuracy, precision, 
and delivery needs of their end-users, they should be operational-
ized in direct consultation with industry stakeholders and manag-
ers (Eveson et al., 2015; Spillman & Hobday, 2014). Workshops and 
focus groups with end-users can help tool developers determine 
the most suitable format, temporal frequency, and dissemination 
pathway for final products. Regular meetings also help build and 
maintain working relationships between parties, creating communi-
cation lines for discussing future tool developments, troubleshoot-
ing issues, or ground-truthing management recommendations (see 
an example of a ground-truthing programme in Turner et al. 2017). 
Additionally, bottom-up stakeholder-driven approaches (such as the 
DM tools described in O’Keefe & DeCelles 2013 and Eveson et al. 
2015) are widely recognized as critical to achieving management 
goals such as stakeholder compliance and participation (Dalton, 
Forrester, & Pollnac, 2012; Halvorsen, 2003; Oyanedel, Marín, 
Castilla, & Gelcich, 2016).

For DM tools that use statistical models or algorithms to predict tar-
get feature attributes (e.g., Coral Reef Watch, Table 1), predictive skill 
should be evaluated. These types of tools calculate management recom-
mendations by extrapolating beyond observed BEES data, and therefore 
ground-truthing predictions is critical to ensuring management recom-
mendations are appropriate. This is in contrast with DM tools that ag-
gregate and summarize BEES data (e.g., WaterWatch, MediSys Table 1), 
which do not introduce extrapolative errors. Tool predictive ability can 
be evaluated using hindcast (i.e., historical) analyses that test tool ability 
to predict appropriate management recommendations to known histor-
ical events. For example, the National Hurricane Center evaluates its 
annual forecast error against observed hurricane tracks (Cangialosi & 

Franklin, 2011), and the MODIS fire products used by the Active Fire 
Mapping Program are evaluated against known fire events (Morisette, 
Privette, & Justice, 2002). Discrepancies between the predicted man-
agement response and known historical events can be used to refine 
the underlying models and algorithms, or presented alongside products 
to improve decision-making, e.g., “the cone of uncertainty” displayed 
around hurricane forecast tracks (Cangialosi & Franklin, 2011).

To simplify our framework, we include only operationalization 
components that occur during the initial implementation; howeve, 
DM tools require ongoing upkeep, and it is important that tools have 
the necessary resources for maintenance. Both observed and mod-
elled BEES data dissemination streams will require funding to be 
produced into the future. Code will break as upgrades and package 
depreciations cause changes to syntax. Additionally, statistical models 
and algorithms are subject to concerns of non-stationarity and can 
introduce extrapolation errors if the BEES conditions over which they 
are predicted fall outside the range of BEES data on which they were 
trained. Ongoing testing of predictive skill using newly collected data 
will be critical to ensure relationships between BEES data and target 
features have not changed, and that predictions are still within ac-
ceptable accuracy limits. Operationalized DM tools require personnel 
and funding to address these maintenance items, and their long-term 
continuance will require institutional investment. To help secure re-
sources, it will be important for national governments and interna-
tional treaties (e.g., The Convention on Biological Diversity, Balmford 
et al., 2005; The World Parks Congress Promise of Sydney, Andersen 
& Enkerlin-Hoeflich, 2015) to recognize DM tools as a core part of the 
management toolbox. It is also important that resource management 
and Earth Observation remain line items in federal budgets. DM tools 
help individuals and governing bodies save money (e.g., by increasing 
fisheries sustainability or reducing property loss), and feedback mech-
anisms could be put in place to quantify and recycle avoided monetary 
losses back into tool maintenance.

5  | CONCLUSIONS

Dynamic management is emerging as a solution to some of the draw-
backs of static management, such as inflexibility to climate variabil-
ity and change, and larger area requirements to meet management 
objectives (Dunn et al., 2016; Spillman & Hobday, 2014). DM tools 
are applicable to a wide range of management purposes, including 
natural disaster preparedness, resource management, and human 
health, and to a wide range of natural systems. Because DM tool op-
erationalization is relatively complex compared to that of static tools, 
it will be important for future studies to make their workflows trans-
parent to serve as guides for subsequent tools. As a starting point, 
we have presented a reproducible and transparent operationaliza-
tion framework, standardized across marine, freshwater, terrestrial, 
and atmospheric DM applications. While DM operational challenges 
might seem prohibitive, they should be viewed as stepping stones—
rather than barriers—to widespread DM implementation. The prac-
tice of static management has been progressively redefined and 
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refined over the past 150 years (Margules & Pressey, 2000; Pressey, 
Visconti, & Ferraro, 2015; Runte, 1997), and it would be myopic to 
not expect a similar maturation process for DM. In a fundamentally 
dynamic world, it is important that we continue to allocate techno-
logical, scientific, and monetary resources to develop management 
solutions that accommodate biological, environmental, economic, 
and social variability.
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